首页> 外文OA文献 >Dispersion in the large-deviation regime. Part II: cellular flow at large P\'eclet number
【2h】

Dispersion in the large-deviation regime. Part II: cellular flow at large P\'eclet number

机译:在大偏差制度中的分散。第二部分:细胞流动   大p \'eclet数

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A standard model for the study of scalar dispersion through advection andmolecular diffusion is a two-dimensional periodic flow with closed streamlinesinside periodic cells. Over long time scales, the dispersion of a scalar inthis flow can be characterised by an effective diffusivity that is a factor$\mathrm{Pe}^{1/2}$ larger than molecular diffusivity when the P\'eclet number$\mathrm{Pe}$ is large. Here we provide a more complete description ofdispersion in this regime by applying the large-deviation theory developed inPart I of this paper. We derive approximations to the rate function governingthe scalar concentration at large time $t$ by carrying out an asymptoticanalysis of the relevant family of eigenvalue problems. We identify twoasymptotic regimes and make predictions for the rate function and spatialstructure of the scalar. Regime I applies to distances from the release pointthat satisfy $|\boldsymbol{x}| = O(\mathrm{Pe}^{1/4} t)$ . The concentration inthis regime is isotropic at large scales, is uniform along streamlines withineach cell, and varies rapidly in boundary layers surrounding the separatricesbetween adjacent cells. The results of homogenisation theory are recovered fromour analysis. Regime II applies when $|\boldsymbol{x}|=O(\mathrm{Pe} \, t/\log\mathrm{Pe})$ and is characterised by an anisotropic concentration distributionthat is localised around the separatrices. A novel feature of this regime isthe crucial role played by the dynamics near the hyperbolic stagnation points.A consequence is that in part of the regime the dispersion can be interpretedas resulting from a random walk on the lattice of stagnation points. The tworegimes overlap so that our asymptotic results describe the scalarconcentration over a large range of distances. They are verified againstnumerical solutions of the family of eigenvalue problems yielding the ratefunction.
机译:通过对流和分子扩散研究标量色散的标准模型是二维周期性流动,其中周期性单元内部有封闭的流线。在长时间尺度上,标量在此流中的弥散可以通过有效扩散系数来表征,该有效扩散系数比P'eclet数$ \ mathrm时的分子扩散系数大\ $ mathrm {Pe} ^ {1/2} $ {Pe} $大。在这里,我们通过应用本文第一部分中发展的大偏差理论,对这种制度下的弥散提供了更完整的描述。通过对相关特征值族进行渐近分析,我们得出了在较大时间控制标量浓度的速率函数的近似值。我们确定了两种渐近状态,并对标量的速率函数和空间结构进行了预测。方案I适用于距释放点满足$ | \ boldsymbol {x} |的距离= O(\ mathrm {Pe} ^ {1/4} t)$。在这种情况下,浓度在各方面都是各向同性的,沿每个单元内的流线是均匀的,并且在相邻单元之间的分离层周围的边界层中迅速变化。均质化理论的结果可以从我们的分析中获得。当$ | \ boldsymbol {x} | = O(\ mathrm {Pe} \,t / \ log \ mathrm {Pe})$时,适用制度II,其特征是分布在分离区周围的各向异性浓度分布。该体制的一个新颖特征是双曲线停滞点附近的动力学起着至关重要的作用。其结果是,在该体制的一部分中,弥散可以解释为是由于在停滞点的晶格上随机游动而引起的。这两个区域重叠,因此我们的渐近结果描述了大范围距离上的标量集中。他们针对产生速率函数的特征值族的数值解进行了验证。

著录项

  • 作者

    Haynes, P. H.; Vanneste, J.;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号